

Investigation of smooth muscle contraction by organ bath

Prof. Dr. Martin Hennenberg

Urologische Klinik und Poliklinik

Klinikum der Universität

Ludwig-Maximilians-Universität München

c/o Urologisches Forschungs-Labor/LIFE-Zentrum

Fraunhoferstr. 20, 82152 Planegg

Martin.Hennenberg@med.uni-muenchen.de

Urological Research Lab| Department of Urology| Prof. Dr. M. Hennenberg

Organ bath: What is it?

- approach for measuring and exploring the contraction of smooth muscle
- "myography"
- intact, fresh tissues, in vitro

Organ bath device, Urological Research Lab

Smooth muscle:

No skeletal muscle, unconscious motoric actions

- blood vessels (vascular smooth muscle)
- Airways
- Lower urinary tract: urinary bladder, prostate
- Gastrointestinal system
- Kidney, corpus cavernosum: vascular smooth muscle

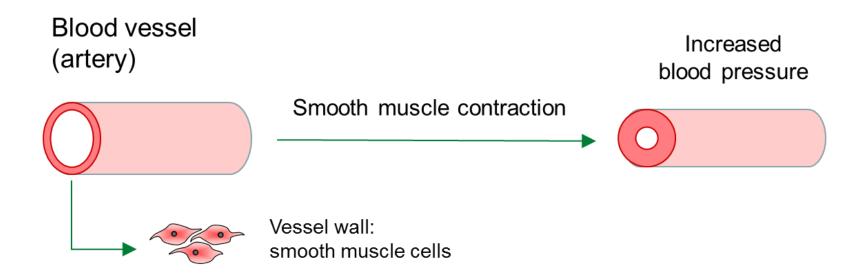
Smooth muscle: Functions, diseases

organ	function	disease	drugs
Blood vessel (peripheral) ¹	Blood pressure, blood flow (systemic, regional)	Arterial hypertension ¹	AT ₁ R antagonists (sartans), ACE inhibitor, Ca ²⁺ antagonist
Airway	Respiration	COPD, asthma	β-agonist
Prostate	Reproduction	Voiding symptoms, BPH	a ₁ -blockers, PDE5 inhibitor
Bladder	Micturition	Storage symptoms, incontinence	Anticholinergics, β_3 -agonist
Kidney ¹	Renal function	diabetes	
Corpus cavernosum ¹	Reproduction	Erectile dysfunction	PDE5 inhibitors

¹ vascular smooth muscle, ² plus pulmonary hypertension, portal hypertension (liver cirrhosis)

Smooth muscle-based diseases:

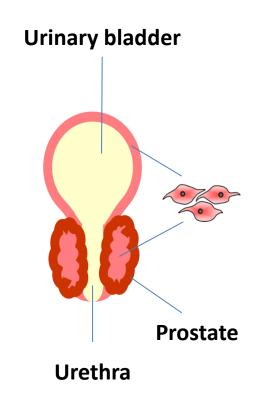
Prevalence, clinical & socioeconomical relevance, costs


Organ system	disease	Number of patients	costs
Cardiovascular system	Arterial hypertension"cardiovasuclar disease"	 3.5 Mrd (ww) >110-115 mmHg 874 Mio (ww) >140 mmHg 9.4 Mio death/a 	1 Trillion USD ww/a
	Liver cirrhosis: portal hypertension	100 Mio ww	
Lower urinary tract	LUTS: • prostate (BPH) • bladder (OAB)	1 Mrd (ww, 2018) (=OAB+BPH)	 BPH, medications: 4.8 Mrd \$, ww/2009 OAB, only USA: 65.9 Mrd \$ (medical + non-medical)
Airways	Asthma, COPD	358 Mio asthma 174 Mio COPD (ww)	19.3 Mrd €/a (only asthma in Europe)

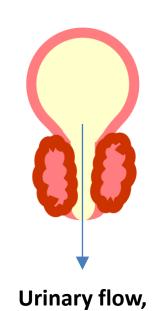
ww, worldwide

Vascular smooth muscle contraction:

Increase of blood pressure, target of medical treatment


Antihypertensive medications:

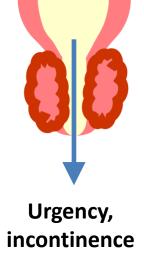
- Inhibition of vascular smooth muscle contraction → decrease of blood pressure
- Sartans (Ang-II receptor antagonists), ACE inhibitors, Ca²⁺ channel blockers



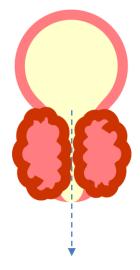
Bladder/prostate smooth muscle contraction:

Lower urinary tract symptoms, target of medical treatment

Normal micturition:
Bladder smooth muscle
contraction



contraction


Overactive bladder:

Increased bladder

smooth muscle

BPH: Increased prostate smooth muscle tone

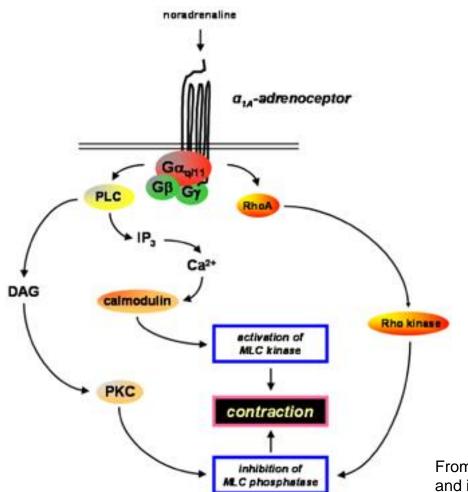
Urethral obstruction, impaired voiding

Medications: inhibition of bladder/prostate smooth muscle contraction

bladder emptying

Investigation of smooth muscle contraction:purposes

- compounds for inhibition of smooth muscle contraction: new medications
- target identification, validation (knockouts)
- pathophysiology
- basic sciences: mechanisms of contraction, relaxation


Investigation of smooth muscle contraction: Who? Where?

- Internal medicine
- Urology
- Preclinical medicine: Pharmacology, Physiology
- Non-academic: pharmaceutic industry

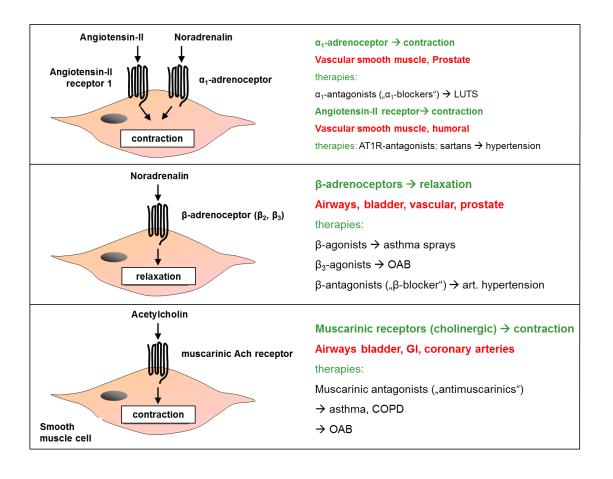
Smooth muscle contraction:

Receptor-induced, intracellular pathways

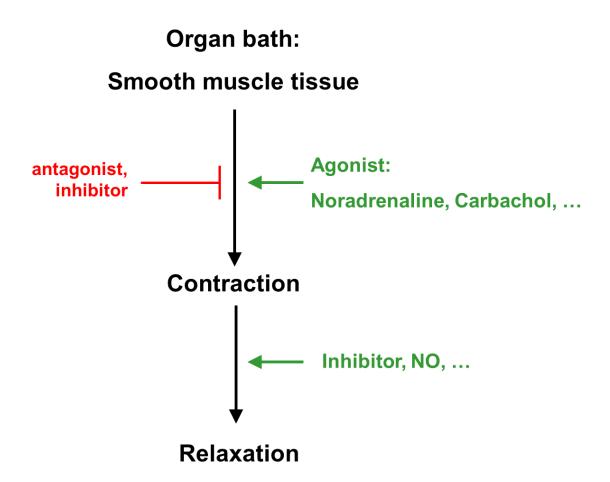
Contractile receptors:

- a₁-adrenoceptor
- Muscarinic/cholinergic
- Angiotensin-II
- Thromboxane A2
- Endothelin

Intracellular pathways:


- Calcium
- PKC
- RhoA/Rho kinase
- others

From: Hennenberg et al.: Prostatic α 1-adrenoceptors: new concepts of function, regulation, and intracellular signaling. Neurourol Urodyn 2014;33:1074-85.


Bladder/prostate smooth muscle contraction:

Lower urinary tract symptoms, target of medical treatment

Organ bath experiments: Principle strategy

Organ bath experiments: Which tissues?

Mice, rats

- knockout models
- disease models
- Without disease, without knockout

Human

- high translational value
- non-diseased controls not always available
- cheap

Tissue samples for organ bath experiments: Organ-specific considerations

Lower urinary tract:

- Prostate, bladder: rPx, rCx
- Prostate: resection flakes from ablative approaches (TURP): traumatized tissues, bad results
- rodents: very small samples, limited translational value, permissions, very bad reputation in Europe (not: USA, China)

Cardiovascular system:

- Aorta, mesenteric vessels: rat, mouse; very common, cheap
- pig: similarity to human, slaughterhouse, butcher, easy
- Human material: umbilical veine
- other human vessels: organ transplantation (hepatic artery), cancer surgery (renal artery)

Airway smooth muscle:

- bovine: slaughterhouse, large, much, cheap
- guinea pig: experimentally-induced COPD, allergic models

Organ bath device: Myograph 720M

Force sensor, transducer

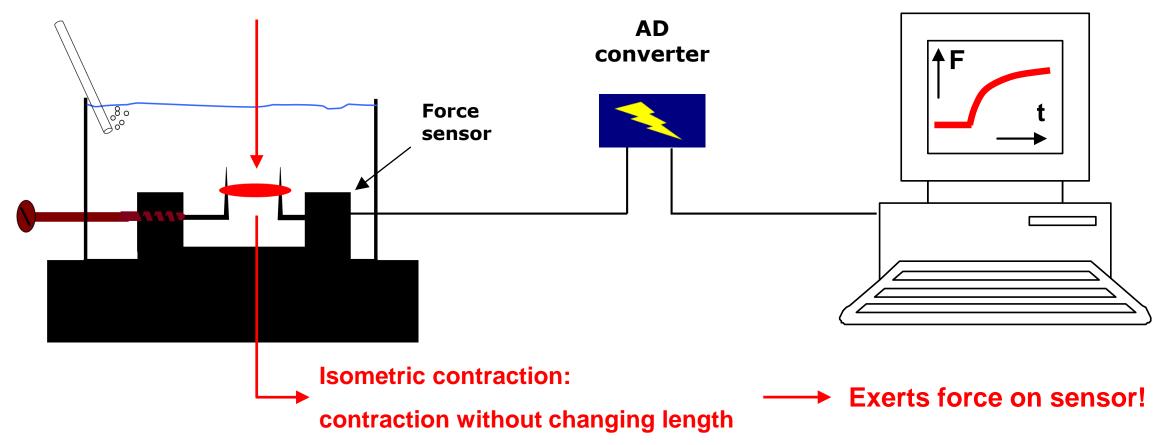
4 chambers

Gas supply (carbogen)

Connection to AD converter

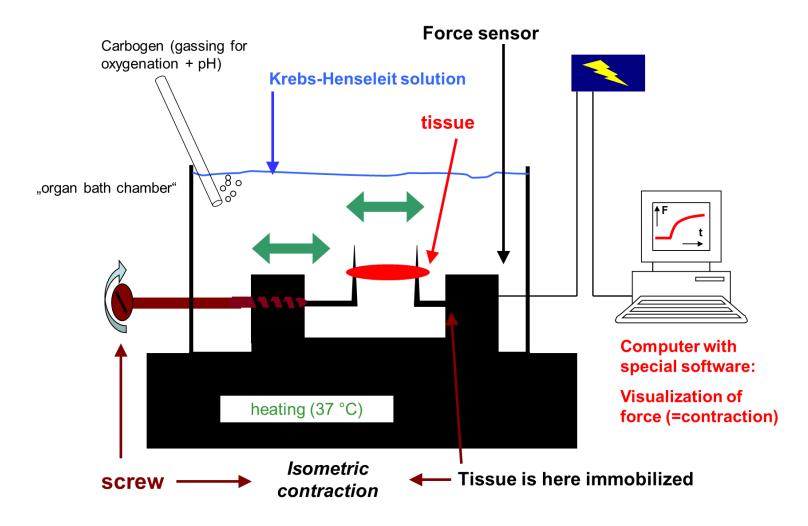
Needles, hooks: attachment of tissue

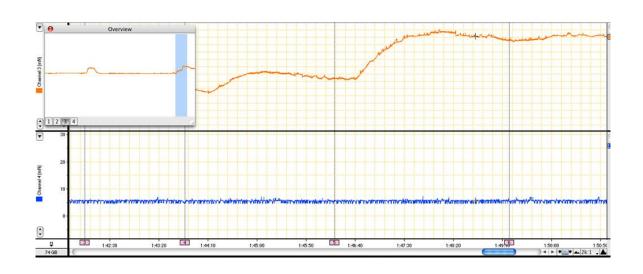
Screw: stretching hooked tissue, pretension

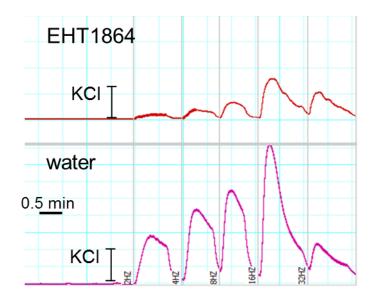


Complete setting:

Myograph, AD converter, computer, software


Agonist: e. g. noradrenaline


Isometric contraction:


Contraction withouth change in length

Induction of contractions: Concentraction response curves

Example #1:

- Human prostate tissue
- Noradrenaline: cumulative concentrations
- With and without a₁-blocker

Example #2:

- Human bladder tissue
- Electric field stimulation: neurogenic contractions
- frequence response curves
- With and without inhibitor

Presentation of results:

Curves, EC_{50} , E_{max} values, analyses

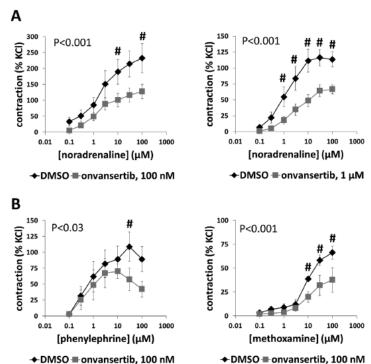


Fig. 1. Effects of onvansertib on adrenergic contractions of human prostate strips. Contractions of human prostate strips were induced by noradrenaline (A), or by the α_1 -adrenoceptor agonists phenylephrine and methoxamine (B) in an organ bath, after addition of onvansertib in a concentration of 100 nM or 1 μM, or of DMSO (controls), or induced by noradrenaline (C) following washout of DMSO and onvansertib (100 nM) for 30 min. In each experiment, DMSO and onvansertib were applied to separate samples, which were obtained from the same prostates. To eliminate heterogeneities due to individual variations, different degree of BPH or other varying smooth muscle content, tensions have been expressed as % of contraction by highmolar KCl, being assessed before application of onvansertib or DMSO. Data are means ± S.E.M. from series with tissues from n = 5 (noradrenaline with 100 nM onvansertib without washout), n = 6 (noradrenaline with $1 \mu M$ onvansertib), n = 5 (phenylephrine), n = 5(methoxamine), and n = 5 (noradrenaline after washout) patients, in which samples from each patient were allocated to both the control and inhibitor groups (#P < 0.05 after multivariate analysis at indicated concentration; P value for whole groups after two-way ANOVA as indicated in inserts).

5 Z 0 0 ·

p<0.004

p<0.04

From: Li et al, Front Pharmacol 2020;11:409.

p<0.001

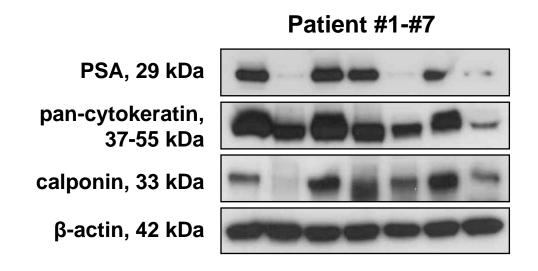
p<0.002

[frequency] (Hz)

■ control ■ EHT1864

2 4 8 16 32

[frequency] (Hz)


■ control ■ EHT1864

Normalization of contractions: Compensaton of tissue heterogeneities

Heterogeneity of tissues:

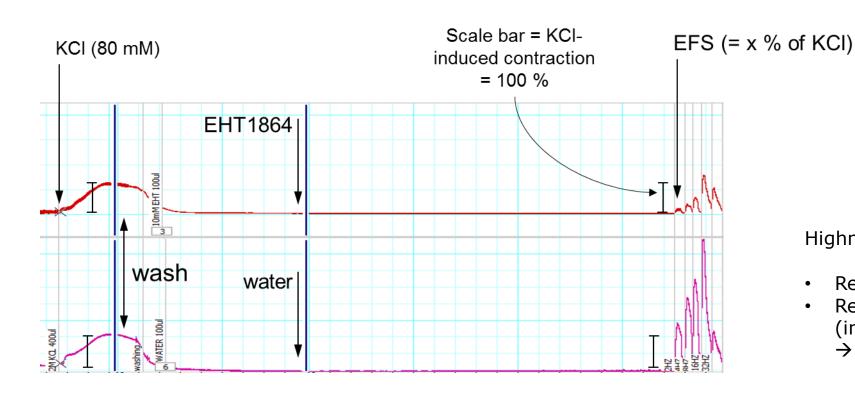
- May affect contractions!
- In particular: human tissues

Sources of heterogeneity:

- Degree of disease
- Individual variation
- Inflammation
- Tissue size
- Composition of tissue

Normalization to:

- KCl (80-120 mM)
- Sample wet weight
- Sample length


Without normalization:

- Force (mN)
- Weight (g)

Normalization:

Highmolar KCI-induced contraction = 100%

Highmolar KCl:

- Receptor-independent contraction
- Reversal of [K+] gradient
 (intra/extracellular) → depolarization
 → increase of intracellular Ca²⁺

Advantages/Disadvantages of organ bath research: Considerations for young researchers

advantages	disadvantage
Running costs: low	Prime costs for device: high (720M ca. 20,000 €)
Required lab space: small (15 m ²)	
Required accessories: rather few	
Level of difficulty: very low	
Tissues, samples: cheap (except rodents)	
Quick!! 1 Experiment: 3 h Series with n=5 → few days	

Thanks for Your attention!

Questions, comments to

E-Mail: martin.hennenberg@med.uni-muenchen.de